- By test - In 猎人市场
空间变换网络教程 — PyTorch 教程 2.9.0+cu128 文档
可视化 STN 结果#
现在,我们将检查我们学习到的视觉注意力机制的结果。
我们定义了一个小型辅助函数来可视化训练过程中的变换。
def convert_image_np(inp):
"""Convert a Tensor to numpy image."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
return inp
# We want to visualize the output of the spatial transformers layer
# after the training, we visualize a batch of input images and
# the corresponding transformed batch using STN.
def visualize_stn():
with torch.no_grad():
# Get a batch of training data
data = next(iter(test_loader))[0].to(device)
input_tensor = data.cpu()
transformed_input_tensor = model.stn(data).cpu()
in_grid = convert_image_np(
torchvision.utils.make_grid(input_tensor))
out_grid = convert_image_np(
torchvision.utils.make_grid(transformed_input_tensor))
# Plot the results side-by-side
f, axarr = plt.subplots(1, 2)
axarr[0].imshow(in_grid)
axarr[0].set_title('Dataset Images')
axarr[1].imshow(out_grid)
axarr[1].set_title('Transformed Images')
for epoch in range(1, 20 + 1):
train(epoch)
test()
# Visualize the STN transformation on some input batch
visualize_stn()
plt.ioff()
plt.show()
/usr/local/lib/python3.10/dist-packages/torch/nn/functional.py:5167: UserWarning:
Default grid_sample and affine_grid behavior has changed to align_corners=False since 1.3.0. Please specify align_corners=True if the old behavior is desired. See the documentation of grid_sample for details.
/usr/local/lib/python3.10/dist-packages/torch/nn/functional.py:5100: UserWarning:
Default grid_sample and affine_grid behavior has changed to align_corners=False since 1.3.0. Please specify align_corners=True if the old behavior is desired. See the documentation of grid_sample for details.
Train Epoch: 1 [0/60000 (0%)] Loss: 2.321845
Train Epoch: 1 [32000/60000 (53%)] Loss: 0.739860
/usr/local/lib/python3.10/dist-packages/torch/nn/_reduction.py:51: UserWarning:
size_average and reduce args will be deprecated, please use reduction='sum' instead.
Test set: Average loss: 0.2149, Accuracy: 9381/10000 (94%)
Train Epoch: 2 [0/60000 (0%)] Loss: 0.310411
Train Epoch: 2 [32000/60000 (53%)] Loss: 0.443614
Test set: Average loss: 0.1403, Accuracy: 9581/10000 (96%)
Train Epoch: 3 [0/60000 (0%)] Loss: 0.184066
Train Epoch: 3 [32000/60000 (53%)] Loss: 0.237139
Test set: Average loss: 0.0851, Accuracy: 9721/10000 (97%)
Train Epoch: 4 [0/60000 (0%)] Loss: 0.235744
Train Epoch: 4 [32000/60000 (53%)] Loss: 0.374082
Test set: Average loss: 0.0717, Accuracy: 9783/10000 (98%)
Train Epoch: 5 [0/60000 (0%)] Loss: 0.209939
Train Epoch: 5 [32000/60000 (53%)] Loss: 0.106230
Test set: Average loss: 0.0677, Accuracy: 9797/10000 (98%)
Train Epoch: 6 [0/60000 (0%)] Loss: 0.210056
Train Epoch: 6 [32000/60000 (53%)] Loss: 0.252697
Test set: Average loss: 0.0668, Accuracy: 9783/10000 (98%)
Train Epoch: 7 [0/60000 (0%)] Loss: 0.123260
Train Epoch: 7 [32000/60000 (53%)] Loss: 0.127563
Test set: Average loss: 0.0553, Accuracy: 9835/10000 (98%)
Train Epoch: 8 [0/60000 (0%)] Loss: 0.108394
Train Epoch: 8 [32000/60000 (53%)] Loss: 0.029457
Test set: Average loss: 0.0483, Accuracy: 9840/10000 (98%)
Train Epoch: 9 [0/60000 (0%)] Loss: 0.176748
Train Epoch: 9 [32000/60000 (53%)] Loss: 0.127248
Test set: Average loss: 0.1173, Accuracy: 9636/10000 (96%)
Train Epoch: 10 [0/60000 (0%)] Loss: 0.243940
Train Epoch: 10 [32000/60000 (53%)] Loss: 0.156468
Test set: Average loss: 0.2388, Accuracy: 9345/10000 (93%)
Train Epoch: 11 [0/60000 (0%)] Loss: 0.378354
Train Epoch: 11 [32000/60000 (53%)] Loss: 0.059640
Test set: Average loss: 0.0448, Accuracy: 9862/10000 (99%)
Train Epoch: 12 [0/60000 (0%)] Loss: 0.129616
Train Epoch: 12 [32000/60000 (53%)] Loss: 0.052506
Test set: Average loss: 0.0436, Accuracy: 9868/10000 (99%)
Train Epoch: 13 [0/60000 (0%)] Loss: 0.045932
Train Epoch: 13 [32000/60000 (53%)] Loss: 0.079384
Test set: Average loss: 0.0446, Accuracy: 9858/10000 (99%)
Train Epoch: 14 [0/60000 (0%)] Loss: 0.031097
Train Epoch: 14 [32000/60000 (53%)] Loss: 0.106284
Test set: Average loss: 0.0422, Accuracy: 9874/10000 (99%)
Train Epoch: 15 [0/60000 (0%)] Loss: 0.133345
Train Epoch: 15 [32000/60000 (53%)] Loss: 0.106248
Test set: Average loss: 0.0414, Accuracy: 9873/10000 (99%)
Train Epoch: 16 [0/60000 (0%)] Loss: 0.044279
Train Epoch: 16 [32000/60000 (53%)] Loss: 0.046603
Test set: Average loss: 0.0626, Accuracy: 9806/10000 (98%)
Train Epoch: 17 [0/60000 (0%)] Loss: 0.157027
Train Epoch: 17 [32000/60000 (53%)] Loss: 0.127502
Test set: Average loss: 0.0497, Accuracy: 9851/10000 (99%)
Train Epoch: 18 [0/60000 (0%)] Loss: 0.041967
Train Epoch: 18 [32000/60000 (53%)] Loss: 0.137598
Test set: Average loss: 0.0397, Accuracy: 9887/10000 (99%)
Train Epoch: 19 [0/60000 (0%)] Loss: 0.115559
Train Epoch: 19 [32000/60000 (53%)] Loss: 0.034766
Test set: Average loss: 0.0362, Accuracy: 9894/10000 (99%)
Train Epoch: 20 [0/60000 (0%)] Loss: 0.078510
Train Epoch: 20 [32000/60000 (53%)] Loss: 0.096980
Test set: Average loss: 0.0715, Accuracy: 9794/10000 (98%)
脚本总运行时间: (1 分钟 36.699 秒)
下载 Jupyter Notebook: spatial_transformer_tutorial.ipynb
下载 Python 源 代码: spatial_transformer_tutorial.py
下载 zip 文件: spatial_transformer_tutorial.zip

